
© 2018 Arm Limited

Context-Base
Computational Value
Prediction with Value

Compression

• Yasuo Ishii
• June 3 2018

© 2018 Arm Limited

Submitted Track: 8KB

3 © 2018 Arm Limited

Motivation and Achievement

• Known modern value predictors (e.g., D-VTAGE)
need large storage to realize noticeable speedup.

• This study proposes 3 techniques to realize
comparable speedup with limited storage.
• Context-base Computational Value Prediction
• Value Compression Cache with Lazy Allocation
• Accuracy / Coverage Control

• Proposed predictor realize large 155KB D-VTAGE
equivalent performance with 8KB budget.
• 17.1% speedup for 135 CVP-1 traces

0%

5%

10%

15%

20%

7.9KB 155.0KB 8.0KB

D-VTAGE Submitted

Sp
ee

d
u

p
 o

ve
r

n
o

 V
P

© 2018 Arm Limited

Context-Base
Computational Value
Prediction

5 © 2018 Arm Limited

Prior Work 1: Last Value Predictor [Lipasti+ 1996]

Last
Value

Value

PC

Each entry can be tagged by PC

6 © 2018 Arm Limited

Prior Work 2: Value TAGE Predictor (VTAGE) [Perais+ 2014]

Table 2

Tag

=

Hash(PC, GHR[7:0])

Table 1

Tag

=

Hash(PC, GHR[3:0])

Last
Value

Value

PC

Value Value

7 © 2018 Arm Limited

Prior Work 3: Stride Value Predictor [Gabbay+ 1996]

Stride
Table

Stride

PC

Last
Value

Base

PC

+

Each entry can be tagged by PC

8 © 2018 Arm Limited

Prior Work 4: Differential VTAGE (D-VTAGE) [Perais+ 2015]

Table 2

Tag

Hash(PC, GHR[7:0])

Table 1

Tag

Hash(PC, GHR[3:0])

Stride
Table

Stride

PC

Last
Value

Base

PC

Stride Stride

==

+

9 © 2018 Arm Limited

Prior Work: Prediction Algorithm Summary

Last Value Prediction Delta Prediction

Last Value PC-Localized NONE

Stride Value PC-Localized PC-Localized

VTAGE
Multi-level

History Correlated
NONE

D-VTAGE PC-Localized
Multi-level

History Correlated

10 © 2018 Arm Limited

Motivation of New Value Prediction Algorithm

Function A Function B Function C

Call C

Call C

LD %r1 M[]
Value : 2, 3, 4, 6, 6, 9

Caller=A : 2, 4, 6

Caller=B : 3, 6, 9

To predict this load instruction in function C, both last value
and stride need to be correlated with context information.

11 © 2018 Arm Limited

Context-base Computational VTAGE (CBC-VTAGE)

Table 3

Tag Base Stride

Hash(PC, GHR[7:0])

Table 2

Tag Base Stride

Hash(PC, GHR[3:0])

Table 1

Tag Base Stride

Hash(PC, GHR[1:0])

Base

Tag Base Stride

Hash(PC)

+=+=+=+=

12 © 2018 Arm Limited

Prediction Algorithm Comparison

Last Value Prediction Delta Prediction

Last Value PC-Localized NONE

Stride Value PC-Localized PC-Localized

Per-path Value
Per-path Stride

1-level
History Correlated

1-level
History Correlated

VTAGE
Multi-level

History Correlated
NONE

D-VTAGE PC-Localized
Multi-level

History Correlated

CBC-VTAGE
Multi-level

History Correlated
Multi-level

History Correlated

13 © 2018 Arm Limited

Other Optimizations

• Update policy
• At update time, ALL tag hit entries with non-zero stride will be updated.
• This is mandatory update policy change for CBC-VTAGE

• Bank-interleave
• Based on PC value, each tagged component can be correlated with different branch history length
• Some branch predictors (e.g., ISL-TAGE) used bank interleave to improve storage efficiency [Seznec 2011]

• No Tagless Components
• All components including base components are (partially) tagged.
• Some existing predictors correlate branch history length=0 to tagged components to enhance tagless component

capability [Ishii+ 2011], [Ishii 2014], [Seznec 2011].

© 2018 Arm Limited

Value Compression Cache

15 © 2018 Arm Limited

Value Locality and Value Compression

• CBC-VTAGE entry is wider than other predictors

• Key Idea: utilize spatial locality to compress the value
• Integer value tends to be close to 0 (e.g., -1. 0, 1, 2, …)
• Address value tends to point small subset of huge memory address space

• Known Approach: Region Cache [Seznec 2011]
• This was originally proposed for indirect predictor in Championship Branch Prediction in 2011.
• Replace top n-bit by pointer to the buffer
• The buffer hold up to 2n-entry full associative buffer

16 © 2018 Arm Limited

Value Compression Cache

• To exploit spatial locality in register values,
we introduced value compression cache

• Instead of higher 54-bit value, each entry
tracks 8-bit pointer and lower 10-bit offset.

• 255-entry full associative buffer
• 2/4-way skewed associative is good enough for real HW
• 256th entry is reserved for 0.

• Full 64-bit value is restored during lookup

Value Compression Cache
(255-entry)

Pointer (8-bit) Offset (10-bit)

Offset (10-bit)Top 54-bit

54-bit Value

Compressed Value

Restored Value

17 © 2018 Arm Limited

Lazy Allocation to Exclude Useless Entries

• Non-negligible number of prediction entries are evicted before they started to make
prediction (before confidence counter got saturated).
• If the counter doesn’t make prediction, it just wastes the allocated resource.

• To mitigate this issue, we allocate compression cache entry only when confidence reach
a certain threshold.

0 1 2 3 4 5 6 7

Compression
Cache Allocation

Qualify Lower 8-bit Value Qualify Full 64-bit Value

© 2018 Arm Limited

Coverage / Accuracy Control

19 © 2018 Arm Limited

Prior Work : Forward Probabilistic Counter [Riley+ 2006]

• Prediction entry employs confidence counter to measure the training progress
• To improve performance by value prediction, the prediction accuracy must be high (~99%) for CVP-1

environment because misprediction penalty is significant.
• To realize very high prediction accuracy, confidence counter should be very wide.

• To mimic wide confidence counter, forward probabilistic counter is utilized.
• In this study, we utilize 3-bit forward probabilistic counter as the default confidence estimator
• If each transition can happen 1/8, 3-bit counter can almost emulate 6-bit counter.

0 1 2 3 4 5 6 7

Start to
make
prediction

Reset value

1 1/8 1/8 1/8 1/8 1/8 1/8

20 © 2018 Arm Limited

Optimization 1: Static Forward Probability Optimization

• Some existing papers [Sheikh+ 2017] indicated that applying more resource for ‘high-
cost’ instructions may improve value predictor performance.

• In this study, we change the forward probability based on instruction type.

Instruction
Type

Latency
(cycle)

Forward Probability
(Stride = 0)

Forward Probability
(Stride != 0)

ALU operation 1 3.5% (=9/256) 10.2% (=26/256)

FP operation 4 28.1% (=72/256) 81.2% (=208/256)

Load (L1 hit) 3 45.7% (=117/256) 100%

Load (L1 miss) >12 59.8% (=153/256) 100%

Load (L2 miss) >60 66.8% (=171/256) 100%

21 © 2018 Arm Limited

Optimization 2: Adaptive Forward Progress Counter

• Even though static optimization works, the
best forward probability is different for
each workload. To adjust accuracy /
coverage balance, direct map 32-entry
accuracy tracking table is employed.

• This table reduces forward probability if
prediction accuracy is lower than threshold.

• Accuracy for each instruction type
measured by forward probabilistic counter.

Instruction Type

Latency

PC

Adjust

Forward

Probability

Accuracy
Tracking

Table

32-entry

Instruction Type Target Accuracy

Load 98.8% (=253/256)

Other 97.3% (=249/256)

NOTE: Even if target accuracy of Load instruction is higher than the others, overall
forward probability of load instructions are higher than the others since default
forward probability is much higher for load instructions.

22 © 2018 Arm Limited

Optimization 3: Blacklist Filtering

• Even while predictor can realize high
accuracy, few instructions can still make
mispredictions.

• Blacklist filter is employed to exclude
these outliers from making prediction.

• If accuracy of value prediction from given
PC is lower than threshold, the value
predictor stops to make prediction. Instruction Type Threshold Accuracy

Load 95.7% (=245/256)

Other 96.1% (=246/256)

Blacklist Filter
(2-way, 256-entry)

PC
Suppress
Prediction

Partial Tag
11-bit

Accuracy
4-bit

NRU
1-bit

© 2018 Arm Limited

Evaluation

24 © 2018 Arm Limited

Budget Counting (total : 65403-bit)

Resource Configuration Bit Count

CBC-VTAGE 8-tables, 128-entry per table
13-bit tag, 3-bit confidence,
2-bit usefulness, 28-bit value

47104-bit

Value Compression Cache 255-entry, full associative
54-bit value, 1-bit NRU for CLOCK

14025-bit

Accuracy Tracking Table 32-entry, direct-map
4-bit forward probabilistic counters

128-bit

Blacklist Filter 256-entry, 2-way skewed associative
11-bit tag, 4-bit counter, 1-bit NRU

4096-bit

Miscellaneous Random seed (32-bit)
Global Tick counter (10-bit)
CLOCK pointer (9-bit)

51-bit

25 © 2018 Arm Limited

Speedup Over No Value Prediction

0.0%

5.0%

10.0%

15.0%

20.0%

7.7KB 164.0KB 7.9KB 155.0KB 8.0KB

VTAGE D-VTAGE Submitted

Sp
ee

d
u

p
 o

ve
r

n
o

 V
P

26 © 2018 Arm Limited

Speedup Breakdown

© 2018 Arm Limited

Summary

28 © 2018 Arm Limited

Summary

• Context-base Computational Value Prediction by TAGE inspired predictor (CBC-VTAGE)
• captures computational depending on context patterns efficiently
• it can outperform similar size D-VTAGE predictor by 5.3%.

• Value Compression Cache to exploit value locality
• Lazy allocation helps to exclude useless values from compression storage
• Compressed the storage size by ~55% with 0.3% slowdown

• Accuracy / Coverage Control
• Static forward probability optimization is very important to maximize the performance (4.2% performance)
• Accuracy tracking table / blacklist filtering can push additional 1.7% performance with reasonable HW cost

2929

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

